A Numerical Simulation on the Leakage Event of a High-Pressure Hydrogen Dispenser

Author:

Wang BenjinORCID,Shen YahaoORCID,Lv Hong,He Pengfei

Abstract

For the sake of the increasing demand of hydrogen fuel cell vehicles, there are more concerns on the safety of hydrogen refueling stations. As one of the key pieces of equipment, the hydrogen dispenser has drawn attention on this aspect since it involves massive manual operations and may be bothered by a high probability of failure. In this paper, a numerical study is conducted to simulate the possible leakage events of the hydrogen dispenser based on a prototype in China whose working pressure is 70 MPa. The leakage accident is analyzed with respect to leakage sizes, leak directions, and the time to stop the leakage. It is found that, due to the large mass flow rate under such high pressure, the leak direction and the layout of the components inside the dispenser become insignificant, and the ignitable clouds will form inside the dispenser in less than 1 s if there is a leakage of 1% size of the main tube. The ignitable clouds will form near the vent holes outside the dispenser, which may dissipate quickly if the leakage is stopped. On the other hand, the gas inside the dispenser will remain ignitable for a long time, which asks for a design with no possible ignition source inside. The results can be useful in optimizing the design of the dispenser, regarding the reaction time and sensitivity requirements of the leakage detector, the size and amount of vent holes, etc.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3