A Fault Warning Method for Electric Vehicle Charging Process Based on Adaptive Deep Belief Network

Author:

Gao Dexin,Wang Yi,Zheng Xiaoyu,Yang Qing

Abstract

If an accident occurs during charging of an electric vehicle (EV), it will cause serious damage to the car, the person and the charging facility. Therefore, this paper proposes a fault warning method for an EV charging process based on an adaptive deep belief network (ADBN). The method uses Nesterov-accelerated adaptive moment estimation (NAdam) to optimize the training process of a deep belief network (DBN), and uses the historical data of EV charging to construct the ADBN of the normal charging process of an EV model. The real-time data of EV charging is obtained and input into the constructed ADBN model to predict the output, calculate the Pearson coefficient between the predicted output and the actual measured value, and judge whether there is a fault according to the size of the Pearson coefficient to realize the fault warning of the EV charging process. The experimental results show that the method is not only able to accurately warn of a fault in the EV charging process, but also has higher warning accuracy compared with the back propagation neural network (BPNN) and conventional DBN methods.

Publisher

MDPI AG

Subject

Automotive Engineering

Reference21 articles.

1. The Safe-Range-Inventory (SRI): An assistance tool for optimizing the charging infrastructure for electric vehicles

2. SOC prediction of electric vehicle power battery based on data driven;Hu;Automot. Eng.,2021

3. A Review of Lithium-Ion Battery Fault Diagnostic Algorithms: Current Progress and Future Challenges

4. A Review on Fault Mechanism and Diagnosis Approach for Li-Ion Batteries;Chao;J. Nanomater.,2015

5. Electric Vehicle Charging Fault Monitoring and Warning Method Based on Battery Model

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3