Energy Management Method for Fast-Charging Stations with the Energy Storage System to Alleviate the Voltage Problem of the Observation Node

Author:

Ye Rui,Huang Xueliang,Yang Zexin

Abstract

Large-scale fast charging of electric vehicles (EVs) probably causes voltage deviation problems in the distribution network. Installing energy storage systems (ESSs) in the fast-charging stations (FCSs) and formulating appropriate active power plans for ESSs is an effective way to reduce the local voltage deviation problem. Some deterministic centralized strategies used for ESSs at FCSs are proposed to solve the voltage deviation problem mentioned above. However, the randomness of the EV load is very large, which can probably reduce the effects of deterministic centralized strategies. A fast and reliable centralized strategy considering the randomness of the EV load for ESSs is a key requirement. Therefore, we propose in this paper a day-ahead scheduling strategy with the aim of maximizing the probability of the nodal voltage change being smaller than a preset limit at the observation node. In the proposed strategy, the uncertainty of EV load is taken into account and the probability of the voltage change of an observation node is quantified by a proposed analytic assessment model (AMM). Furthermore, a voltage change optimization model (VCOM) based on a novel control parameter β is proposed, where β can be used as a constraint to suppress the nodal voltage change at the observation node. Finally, the IEEE 33-bus test system is used to verify the effectiveness of the proposed day-ahead ESS strategy.

Publisher

MDPI AG

Subject

Automotive Engineering

Reference23 articles.

1. Climate change challenges on CO2 emission reduction for developing countries: A case for Malaysia’s agenda for action;Yowpeng;Int. J. Clim. Chang. Impacts Responses,2010

2. Electric vehicles challenges and opportunities: Lithuanian review

3. IEA Global EV Outlook 2019https://www.iea.org.

4. A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles

5. A Stochastic Method for Prediction of the Power Demand at High Rate EV Chargers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3