Simultaneous Long-Term Planning of Flexible Electric Vehicle Photovoltaic Charging Stations in Terms of Load Response and Technical and Economic Indicators

Author:

Azimi Nasab MortezaORCID,Zand Mohammad,Padmanaban SanjeevikumarORCID,Khan BaseemORCID

Abstract

Photovoltaic charging stations (PVCSs) are one of the most important pieces of charging equipment for electric vehicles (EVs). Recently, the process of designing solar charging stations as flexible sources has been growing and developing. This paper presents a relatively complete design of a solar charging station as a flexible economic resource in a 10-year planning horizon based on a genetic algorithm in two scenarios. PVCSs are not considered in the first scenario. This scenario is only to confirm the results, and the proposed method is proposed. However, in the second scenario, the effects of PVCSs and the demand response strategy (DR) on this development are considered. Copula probability distribution functions are used to create appropriate scenarios for vehicles during different planning years. The proposed energy management system shows a stable performance in terms of the annual load growth index and electricity price of each level of demand over the time horizon along with minimizing power losses and costs required, which makes PVCS efficiency higher and gives them a suitable structure and stability. The modeling results in terms of uncertainties in the system indicate that the use of load management along with PVCS design and flexible electric vehicle charge control strategies improves power quality parameters and optimizes system cost over a period of 10 years. Compared to the obtained results with the traditional case, it is observed that long-term planning in terms of DR and PVCSs and the technical specifications of the network have been improved. As a result of this proposed long-term planning, PVCSs are more flexible.

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3