A Q-Learning-Based Approach for Deploying Dynamic Service Function Chains

Author:

Sun Jian,Huang Guanhua,Sun Gang,Yu Hongfang,Sangaiah Arun KumarORCID,Chang Victor

Abstract

As the size and service requirements of today’s networks gradually increase, large numbers of proprietary devices are deployed, which leads to network complexity, information security crises and makes network service and service provider management increasingly difficult. Network function virtualization (NFV) technology is one solution to this problem. NFV separates network functions from hardware and deploys them as software on a common server. NFV can be used to improve service flexibility and isolate the services provided for each user, thus guaranteeing the security of user data. Therefore, the use of NFV technology includes many problems worth studying. For example, when there is a free choice of network path, one problem is how to choose a service function chain (SFC) that both meets the requirements and offers the service provider maximum profit. Most existing solutions are heuristic algorithms with high time efficiency, or integer linear programming (ILP) algorithms with high accuracy. It’s necessary to design an algorithm that symmetrically considers both time efficiency and accuracy. In this paper, we propose the Q-learning Framework Hybrid Module algorithm (QLFHM), which includes reinforcement learning to solve this SFC deployment problem in dynamic networks. The reinforcement learning module in QLFHM is responsible for the output of alternative paths, while the load balancing module in QLFHM is responsible for picking the optimal solution from them. The results of a comparison simulation experiment on a dynamic network topology show that the proposed algorithm can output the approximate optimal solution in a relatively short time while also considering the network load balance. Thus, it achieves the goal of maximizing the benefit to the service provider.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3