Author:
M. Al-Sammna Ahmed,Hadri Azmi Marwan,Abd Rahman Tharek
Abstract
This paper considers the channel modeling and prediction for ultra-wideband (UWB) channels. The sparse property of UWB channels is exploited, and an efficient prediction framework is developed by introducing two simplified UWB channel impulse response (CIR) models, namely, the windowing-based on window delay (WB-WD) and the windowing-based on bin delay (WB-BD). By adopting our proposed UWB windowing-based CIR models, the recursive least square (RLS) algorithm is used to predict the channel coefficients. By using real CIR coefficients generated from measurement campaign data conducted in outdoor environments, the modeling and prediction performance results and the statistical properties of the root mean square (RMS) delay spread values are presented. Our proposed framework improves the prediction performances with lower computational complexity compared with the performance of the recommended ITU-R UWB-CIR model. It is shown that our proposed framework can achieved 15% lower prediction error with a complexity reduction by a factor of 12.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献