Comparison of Random Subspace and Voting Ensemble Machine Learning Methods for Face Recognition

Author:

Yaman Mehmet,Subasi AbdulhamitORCID,Rattay Frank

Abstract

Biometry based authentication and recognition have attracted greater attention due to numerous applications for security-conscious societies, since biometrics brings accurate and consistent identification. Face biometry possesses the merits of low intrusiveness and high precision. Despite the presence of several biometric methods, like iris scan, fingerprints, and hand geometry, the most effective and broadly utilized method is face recognition, because it is reasonable, natural, and non-intrusive. Face recognition is a part of the pattern recognition that is applied for identifying or authenticating a person that is extracted from a digital image or a video automatically. Moreover, current innovations in big data analysis, cloud computing, social networks, and machine learning have allowed for a straightforward understanding of how different challenging issues in face recognition might be solved. Effective face recognition in the enormous data concept is a crucial and challenging task. This study develops an intelligent face recognition framework that recognizes faces through efficient ensemble learning techniques, which are Random Subspace and Voting, in order to improve the performance of biometric systems. Furthermore, several methods including skin color detection, histogram feature extraction, and ensemble learner-based face recognition are presented. The proposed framework, which has a symmetric structure, is found to have high potential for biometrics. Hence, the proposed framework utilizing histogram feature extraction with Random Subspace and Voting ensemble learners have presented their superiority over two different databases as compared with state-of-art face recognition. This proposed method has reached an accuracy of 99.25% with random forest, combined with both ensemble learners on the FERET face database.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3