Abstract
The traditional cloud-based Internet of Things (IoT) architecture places extremely high demands on computers and storage on cloud servers. At the same time, the strong dependence on centralized servers causes major trust problems. Blockchain provides immutability, transparency, and data encryption based on safety to solve these problems of the IoT. In this paper, we present a distributed secure edge computing architecture using multiple data storages and blockchain agents for the real-time context data integrity in the IoT environment. The proposed distributed secure edge computing architecture provides reliable access and an unlimited repository for scalable and secure transactions. The architecture eliminates traditional centralized servers using an edge computing framework that represents cloud computing for computer and security issues. Also, blockchain-based edge computing-compatible IoT design is supported to achieve the level of security and scalability required for data integrity. Furthermore, we present the blockchain agent to provide internetworking between blockchain networks and edge computing. For experimenting with the proposed architecture in the IoT environment, we implement and perform a concrete IoT environment based on the EdgeX framework and Hyperledger Fabric. The evaluation results are collected by measuring the performance of the edge computing and blockchain platform based on service execution time to verify the proposed architecture in the IoT environment.
Subject
Control and Optimization,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献