Adaptive Fuzzy Active-Disturbance Rejection Control-Based Reconfiguration Controller Design for Aircraft Anti-Skid Braking System

Author:

Zhang Zhao,Yang Zhong,Zhou Guoxing,Liu Shuchang,Zhou Dongsheng,Chen Shuang,Zhang Xiaokai

Abstract

The aircraft anti-skid braking system (AABS) is an essential aero electromechanical system to ensure safe take-off, landing, and taxiing of aircraft. In addition to the strong nonlinearity, strong coupling, and time-varying parameters in aircraft dynamics, the faults of actuators, sensors, and other components can also seriously affect the safety and reliability of AABS. In this paper, a reconfiguration controller-based adaptive fuzzy active-disturbance rejection control (AFADRC) is proposed for AABS to meet increased performance demands in fault-perturbed conditions as well as those concerning reliability and safety requirements. The developed controller takes component faults, external disturbance, and measurement noise as the total perturbations, which are estimated by an adaptive extended state observer (AESO). The nonlinear state error feedback (NLSEF) combined with fuzzy logic can compensate for the adverse effects and ensure that the faulty AABS maintains acceptable performance. Numerical simulations are carried out in different runway environments. The results validate the robustness and reconfiguration control capability of the proposed method, which improves AABS safety as well as braking efficiency.

Funder

the Key Laboratory Projects of Aeronautical Science Foundation of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference42 articles.

1. On improving the performance of aircraft antilock brake system;Wang;J. Northwestern Polytech. Univ.,2000

2. A high efficiency aircraft anti-skid brake control with runway identification

3. Electric brakes tested on F-16;Dornheim;Aviat. Week Space Technol.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3