Characterization of the Pollen Trapped by Populus L. Seeds during the Dispersion Season

Author:

Ribeiro Helena12ORCID,Castro Paula2,Abreu Ilda13

Affiliation:

1. Earth Sciences Institute, Pole of the Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal

2. Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal

3. Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal

Abstract

Our study aimed to quantify the pollen trapped by the seeds and relate it with the airborne pollen concentrations. Individual Populus spp. tuft-like seeds were sampled while suspended twice a day in 2017 and 2018 during the seed dispersal season. The seeds were submitted to laboratory treatment for pollen extraction, which was quantified using an optical microscope. Airborne pollen was monitored using a seven-day Hirst-type volumetric spore sampler. A correlation analysis was performed between the airborne pollen, the pollen on the seeds, and the meteorological parameters. A total of 26 pollen grains/mg was counted in the airborne tuft-like seeds, with 26 different taxa being identified, compared with the 18 pollen taxa identified in the airborne samples. Quercus, Poaceae, Urticaceae, Pinus, and Platanus were the most frequent pollen found on the seeds, while in the atmosphere, pollen from Urticaceae, Quercus, and Cupressaceae were the most representative. A tendency of higher pollen concentrations found in the afternoon samples, both airborne and on the seeds, was observed. Correlations between the meteorological parameters and pollen concentration found airborne and in the seeds were overall not significant. Thus, airborne poplar tuft-like seeds can trap and transport pollen, most of which has been recognized to induce respiratory allergies.

Funder

Institute of Earth Sciences

FCT—Foundation for Science and Technology, I.P.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3