Unsupervised Anomaly Detection Applied to Φ-OTDR

Author:

Almudévar AntonioORCID,Sevillano PascualORCID,Vicente LuisORCID,Preciado-Garbayo JavierORCID,Ortega AlfonsoORCID

Abstract

Distributed acoustic sensors (DASs) based on direct-detection Φ-OTDR use the light–matter interaction between light pulses and optical fiber to detect mechanical events in the fiber environment. The signals received in Φ-OTDR come from the coherent interference of the portion of the fiber illuminated by the light pulse. Its high sensitivity to minute phase changes in the fiber results in a severe reduction in the signal to noise ratio in the intensity trace that demands processing techniques be able to isolate events. For this purpose, this paper proposes a method based on Unsupervised Anomaly Detection techniques which make use of concepts from the field of deep learning and allow the removal of much of the noise from the Φ-OTDR signals. The fact that this method is unsupervised means that no human-labeled data are needed for training and only event-free data are used for this purpose. Moreover, this method has been implemented and its performance has been tested with real data showing promising results.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. Nonlinear Fiber Optics;Agrawal,2013

2. Apparatus and Method for Fiber Optic Intrusion Sensing;Taylor;U.S. Patent,1993

3. Field test of a distributed fiber-optic intrusion sensor system for long perimeters

4. Distributed fibre optic sensors for pipeline protection;Tanimola;J. Nat. Gas Sci. Eng.,2009

5. An Event Recognition Method for Φ-OTDR Sensing System Based on Deep Learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3