A Review of the Mechanical Properties of 17-4PH Stainless Steel Produced by Bound Powder Extrusion

Author:

Jones Jaidyn1,Vafadar Ana2,Hashemi Reza1ORCID

Affiliation:

1. College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia

2. School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia

Abstract

17-4PH Stainless Steel is a mechanically high-performing alloy that is widely used across chemical and mechanical processing industries. The alloy is conventionally fabricated by cast methods, but emerging additive manufacturing techniques are presently offering an economic, efficient, and environmentally friendly alternative. Bound Powder Extrusion (BPE) is a relatively new additive manufacturing technique that is used to fabricate three-dimensional, free-form components. Investigation into the mechanical properties and behavior of 17-4PH stainless steel fabricated by BPE is vital to understanding whether this technique proposes a competitive substitute to the cast alloy within industry. Published literature has investigated the as-fabricated mechanical properties, microstructure, porosity, and post-processing heat treatment of the BPE alloy, with limited comparison evident among the papers. This paper, therefore, aims to review published findings on the mechanical properties of 17-4PH stainless steel produced by additive manufacturing techniques, with a key focus on BPE. It is important to highlight that this review study focuses on the MetalXTM 3D printer, manufactured by Markforged. This printer is among the widely utilized BPE 3D printers available in the market. The key results, together with the impact of post-heat treatments, were discussed and compared to provide a more comprehensive picture of the patterns that this alloy presents in terms of its microstructure and mechanical properties. This enables the manufacture of components relative to desired material performance, improving overall functionality. A comparison of yield strength, ultimate tensile strength (UTS), Young’s modulus, ductility, and hardness was made relative to microstructure, porosity, and density of published literature for the as-fabricated and post-heat-treated states, identifying areas for further research.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3