Patterning of Surfaces for Subsequent Roll Bonding in a Low-Oxygen Environment Using Deformable Mesh Inlays

Author:

Frolov Yaroslav12ORCID,Bobukh Oleksandr1ORCID,Samsonenko Andrii1ORCID,Nürnberger Florian2ORCID

Affiliation:

1. Metal Forming Department, Ukrainian State University of Science and Technologies, 49600 Dnipro, Ukraine

2. Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, 30167 Hannover, Germany

Abstract

Efficient roll bonding for the manufacturing of clad strips not only requires surface activation but also is improved by a surface patterning to reduce the initial contact area. This increases contact stresses and facilitates a joining without an increasing rolling force. Experiments to pattern surfaces with deformable inlays during cold rolling for a subsequent bonding in low-oxygen atmosphere were carried out using two types of rolling mills, two types of inlays and two types of assemblies. Digital twins of selected experiments were created by means of the FE simulation software QForm UK 10.2.4. The main set of rolling parameters, which play a significant role during formation of the pattern shape considering deformation of the patterning tool, were investigated. The pilot roll bonding of patterned components under vacuum conditions, provided using vacuum sealer bags, allowed for an experimental realization of this approach. The concept technological chain of roll bonding in a low-oxygen or oxygen-free environment comprises the following stages: roll patterning; surface activation and sealing of the strips in a vacuum bag; subsequent roll bonding of the prepared strips inside the protective bag. The difference between the shape of the pattern created and the initial shape of the mesh insert can be quantitatively described by the change of its angle. This difference reaches maximum values when smaller rolls are used with increased rolling reductions. This maximum value is limited by the springback of the deformed insert; the limit is reached more easily if the inlay is not positioned on the rolling plane.

Funder

Niedersächsisches Ministerium für Wissenschaft und Kultur, Nieders. Vorab—Flexibel und Dynamisch

German Research Foundation

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3