Study of the Law Motion of the Micro-EDM Drilling Process

Author:

Pellegrini Giuseppe1,Ravasio Chiara1ORCID

Affiliation:

1. Department of Management, Information and Production Engineering, University of Bergamo, Viale Marconi 5, Dalmine, 24129 Bergamo, Italy

Abstract

Micro-EDM is an unconventional technology used to machine every type of electrically conductive material regardless of its mechanical properties. Material removal occurs through electrical discharges between the workpiece and the electrode immersed in a dielectric fluid. In drilling operations, the technology is able to realise microholes with excellent quality in terms of precision, quality surface, roundness, and taper to the detriment of the machining time, which is less than other technologies. Several efforts are being made to improve different features related to the process performance that are severely affected by both the operative conditions, such as the electrode material or the type of dielectric, and process parameters. The typical indexes used to characterise the performance are the machining time, the material removal rate, and the geometric indexes. These indexes are very effective and are easily measurable, but they do not give information about the evolution of the drilling process, which could be irregular due to the different phenomena occurring during machining. The aim of this paper is the development of a method able to elaborate the motion law of the electrode during the micro-EDM drilling operation. In order to do this, a single hole was manufactured in several steps, recording both the machining time and electrode wear for each step. In this way, the actual position of the electrode during the drilling can be measured without the use of a predictive model for electrode wear. It was tested to confirm that the multistep procedure did not introduce new phenomena, in contrast to the traditional drilling operation. This method was used to study the effects of the electrode diameter, the type of electrode, the length of the electrode out of the spindle, and the entity of the run-out on the process performance. The tests were executed on titanium alloy sheets using a tungsten carbide electrode and hydrocarbon oil as the dielectric. It was found that the descent of the electrode into the workpiece was not regular, but it depended on the level of debris concentration in the machining zone. The debris concentration was influenced by the type and diameter of the electrode, its length out of the spindle, and, to a lesser extent, the run-out. This method was found to be a useful method for an in-depth analysis of the micro-EDM drilling process, contributing to a better understanding of the physical aspects of the process.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Reference32 articles.

1. Realization of micro EDM drilling with high machining speed and accuracy by using mist deionized water jet;Li;Precis. Eng.,2020

2. A comparative assessment in sequential μ drilling of Hastelloy X using laser in combination with μEDM and μECM;Sivaprasad;J. Braz. Soc. Mech. Sci. Eng.,2021

3. Analysis of small holes manufacturing for optomechanical components;Tomicek;Manuf. Technol.,2020

4. Micro-EDM—Recent developments and research issues;Pham;J. Mater. Process. Technol.,2004

5. A study of micro-electro discharge machining electrode wear;Pham;Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3