Towards Developing Big Data Analytics for Machining Decision-Making

Author:

Ghosh Angkush Kumar1ORCID,Fattahi Saman2ORCID,Ura Sharifu1ORCID

Affiliation:

1. Division of Mechanical and Electrical Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan

2. Advanced Manufacturing Engineering Laboratory, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan

Abstract

This paper presents a systematic approach to developing big data analytics for manufacturing process-relevant decision-making activities from the perspective of smart manufacturing. The proposed analytics consist of five integrated system components: (1) Data Preparation System, (2) Data Exploration System, (3) Data Visualization System, (4) Data Analysis System, and (5) Knowledge Extraction System. The functional requirements of the integrated system components are elucidated. In addition, JAVA™- and spreadsheet-based systems are developed to realize the proposed system components. Finally, the efficacy of the analytics is demonstrated using a case study where the goal is to determine the optimal material removal conditions of a dry Electrical Discharge Machining operation. The analytics identified the variables (among voltage, current, pulse-off time, gas pressure, and rotational speed) that effectively maximize the material removal rate. It also identified the variables that do not contribute to the optimization process. The analytics also quantified the underlying uncertainty. In summary, the proposed approach results in transparent, big-data-inequality-free, and less resource-dependent data analytics, which is desirable for small and medium enterprises—the actual sites where machining is carried out.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multicriteria Optimisation of Machining Operations Using a Spreadsheet Model;Tehnički glasnik;2024-07-15

2. Combinatorial Explosion Problem of Big Data Analytics by Morphological Approach;2024 International Russian Smart Industry Conference (SmartIndustryCon);2024-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3