Experimental and Numerical Investigations on Strains of Metal Sheet Parts Processed by Electromagnetic Forming

Author:

Luca Dorin1,Luca Dorian D.2

Affiliation:

1. Faculty of Materials Science and Engineering, Technical University of Iasi, 700050 Iasi, Romania

2. Young Independent Researcher, Engineer, 700360 Iasi, Romania

Abstract

Electromagnetic forming is applied to form metal sheet parts from both non-ferrous and ferrous materials. In this paper, the electromagnetic forming behavior of aluminum alloy, copper and steel sheets was investigated through experiments. The disk-shaped specimens were electromagnetically free bulged with increasing deformation energies and parts with different deformation depths were obtained. The deformation was done with and without clamping the movement of the specimens’ edges. The specimens were printed with a mesh of diametrical lines and concentric circles with a predetermined pitch. The mesh served to determine the displacements in the mesh nodes after the deformation of the specimens, with which the axial, radial and circumferential strains were then calculated. The experimental data obtained was subjected to statistical correlation and regression analyses, and the mathematical models for the three main strains in each material were established. The strains of AlMn0.5Mg0.5 and Cu-OF parts are maximum in the center and have a similar variation, while the FeP04 parts have the maximum strains in an intermediate zone between the center and the edge.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3