Affiliation:
1. Faculty of Arts and Social Sciences (FASS), Lancaster University, Lancaster LA1 4YB, UK
Abstract
In anticipation of the growing demand for energy efficiency, research is underway on the advancement of the next generation of bio-inspired adaptive systems for multi-stimuli-responsive building envelopes. At this point, it is vital to perceive how materials are altered by various stimuli. To address this challenge, I conceptualise the following question: how can hydro-actuated systems become multi-responsive systems through combining bio-responsive mechanisms? To begin to imagine these actuators, I take inspiration from bio-inspired mechanisms to chart viable avenues/principles that can lead to scalable applications. Hydro-actuated facades can help decrease energy consumption in buildings because of the advantage of using bio-inspired materials and smart mechanisms derived from natural phenomena that occur on the scale of plants or animals. Most hydro-actuated facades are restricted in terms of their responses to a single stimulus, which makes them ineffective for building envelopes due to their inability to respond to other stimuli. The main aim of this study is to define challenges concerning hydro-actuated facades and develop principles to create a multi-stimuli-responsive system that senses and actuates passively. In this regard, by introducing a strategy of combining natural mechanisms in the context of architectural envelopes, this paper presents extra insight into the connection between building facades and environmental mechanisms.
Funder
Lancaster University Library
Faculty of Arts and Social Sciences (FASS), Lancaster University
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献