Fine-Scale Urban Heat Patterns in New York City Measured by ASTER Satellite—The Role of Complex Spatial Structures

Author:

Nath Bibhash,Ni-Meister Wenge,Özdoğan Mutlu

Abstract

Urban areas have very complex spatial structures. These spatial structures are primarily composed of a complex network of built environments, which evolve rapidly as the cities expand to meet the growing population’s demand and economic development. Therefore, studying the impact of spatial structures on urban heat patterns is extremely important for sustainable urban planning and growth. We investigated the relationship between surface temperature obtained by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, at 90 m spatial resolution) and different urban components based on high-resolution QuickBird satellite imagery classification. We further investigated the relationships between ASTER-derived surface temperature and building footprint and land use information acquired by the New York City (NYC) Department of City Planning. The ASTER image reveals fine-scale urban heat patterns in the NYC metropolitan region. The impervious-medium and dark surfaces, along with bright covers, generate higher surface temperatures. Even with highly reflective urban surfaces, the presence of impervious materials leads to an increased surface temperature. At the same time, trees and shadows cast by buildings effectively reduce urban heat; on the contrary, grassland does not reduce or amplify urban heat. The data aggregated to the census tract reveals high-temperature hotspots in Queens, Brooklyn, and the Bronx region of NYC. These clusters are associated with industrial and manufacturing areas and multi-family walk-up buildings as dominant land use. The census tracts with more trees and higher building height variability showed cooling effects, consistent with shadows cast by high-rise buildings and trees. The results of this study can be valuable for urban heat island modeling on the impact of shadow generated by building heights variability and trees on small-scale surface temperature patterns since recent image reveals similar hotspot locations. This study further helps identify the risk areas to protect public health.

Funder

NASA Headquarters

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3