Abstract
Due to the rapid development of RGB-D sensors, increasing attention is being paid to depth image applications. Depth images play an important role in computer vision research. In this paper, we address the problem of inpainting for single depth images without corresponding color images as a guide. Within the framework of model-based optimization methods for depth image inpainting, the split Bregman iteration algorithm was used to transform depth image inpainting into the corresponding denoising subproblem. Then, we trained a set of efficient convolutional neural network (CNN) denoisers to solve this subproblem. Experimental results demonstrate the effectiveness of the proposed algorithm in comparison with three traditional methods in terms of visual quality and objective metrics.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献