Author:
Zhang Xiaoyong,Chen Yu,Shen Xiaosheng,Zhu Yao
Abstract
Forty-eight circular concrete-filled steel tube (CFST) columns subjected to lateral impact were tested to investigate the behavior of circular CFST columns under axial compressive load. Analyses of effects of concrete compressive strength, impact location and impact energy on residual ultimate axial capacity, ductility and initial stiffness are provided in this paper. It is found that lateral impact has negative effects on residual ultimate axial capacity of circular CFST columns from test results. Residual ultimate axial capacity decreases as impact energy increases and impact location comes close to the end of the specimen. It is also found that increasing concrete compressive strength can reduce the negative effects of impact location on residual ultimate axial capacity. Ductility and the initial stiffness of circular CFST columns decrease as impact energy increases. Ductility and the initial stiffness increase as impact location varies from middle-length to the end of specimens. When impact energy and impact location are constant, the ductility of the specimen with 30 MPa of concrete compressive strength is better than that of other specimens with different compressive strength. Besides, analyses of strain developments for 12 typical specimens to investigate failure modes under axial compressive load are provided in this paper. Strain developments have indicated that the steel at impact location becomes plastic faster than that at other locations. Based on the test results, a calculation formula is presented to predict the residual ultimate axial capacities of circular CFST columns subjected to lateral impact, and good agreement with experimental results has been achieved.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献