Fault Diagnosis of Rolling Bearings Based on Improved Kurtogram in Varying Speed Conditions

Author:

Ren Yong,Li Wei,Zhang BoORCID,Zhu Zhencai,Jiang Fang

Abstract

Envelope analysis is a widely used method in fault diagnoses of rolling bearings. An optimal narrowband chosen for the envelope demodulation is critical to obtain high detection accuracy. To select the narrowband, the fast kurtogram (FK), which computes the kurtosis of a set of filtered signals, is introduced to detect cyclic transients in a signal, and the zone with the maximum kurtosis is the optimal frequency band. However, the kurtosis value is affected by rotating frequencies and is sensitive to large random impulses which normally occur in industrial applications. These factors weaken the performance of the FK for extracting weak fault features. To overcome these limitations, a novel feature named Order Spectrum Correlated Kurtosis (OSCK) is proposed, replacing the kurtosis index in the FK, to construct an improved kurtogram called Fast Order Spectrum Correlated Kurtogram (FOSCK). A band-pass filter is used to extract the optimal frequency band signal corresponding to the maximum OSCK. The envelope of the filtered signal is calculated using the Hilbert transform, and a low-pass filter is employed to eliminate the trend terms of the envelope. Then, the non-stationary filtered envelope is converted in the time domain into the stationary envelope in the angular domain via Computed Order Tracking (COT) to remove the effects of the speed fluctuation. The order structure of the angular domain envelope signal can then be used to determine the type of fault by identifying its characteristic order. This method offers several merits, such as fine order spectrum resolution and robustness to both random shock and heavy noise. Additionally, it can accurately locate the bearing fault resonance band within a relatively large speed fluctuation. The effectiveness of the proposed method is verified by a number of simulations and experimental bearing fault signals. The results are compared with several existing methods; the proposed method outperforms others in accurate bearing fault feature extraction under varying speed conditions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3