Resilient Modulus—Physical Parameters Relationship of Improved Red Clay by Dynamic Tri-Axial Test

Author:

Yuan Haiping,Li Weiqiang,Wang Yixian,Lin Hang,Liu Yan

Abstract

As one of the important parameters used in the analysis and design of subgrade, resilient modulus is directly related to the safety, economic and life time of subgrade structure. In this paper, the characteristics of resilient modulus of improved red clay at different additive content were studied through conducting laboratory repeated load tri-axial tests. The influence of stress state, moisture content, compactness, additive types, and content on resilient modulus were analyzed. In addition, the regression analysis of resilient modulus, was carried out referencing three existing prediction models. The results showed that the Andrei model can better fit the resilient modulus of red clay and have a higher determination coefficient. However, the Andrei model and other existing prediction models, reflect only the influence of stress state on resilient modulus, without considering the influence of moisture content, compactness and additive content. Therefore, based on the Andrei model, a comprehensive prediction model, which can reflect the influence of compactness, moisture content, additive content, and stress state on resilient modulus was introduced. Good agreement between the regression results and the measured ones demonstrated the integrative ability of the introduced model.

Funder

National Natural Science Foundation of China

the Opening Project of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3