An Integrated FTA-FMEA Model for Risk Analysis of Engineering Systems: A Case Study of Subsea Blowout Preventers

Author:

Shafiee MahmoodORCID,Enjema Evenye,Kolios Athanasios

Abstract

Engineering systems such as energy production facilities, aviation systems, maritime vessels, etc. continue to grow in size and complexity. This growth has made the identification, quantification and mitigation of risks associated with the failure of such systems so complicated. To solve this problem, several advanced techniques such as Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), Reliability-Block Diagram (RBD), Reliability-Centered Maintenance (RCM), Monte-Carlo Simulation (MCS), Markov Analysis (MA) and Bayesian Networks (BN) have been developed in the literature. In order to improve the strengths and eliminate the drawbacks of classical techniques, some hybrid models have been recently developed. In this paper, an integrated FTA and FMEA model is proposed for risk analysis of safety-critical systems. Minimal cut sets derived from the fault trees are weighted based on Birnbaum’s measure of importance and then the weights are used to revise Risk Priority Numbers (RPNs) obtained from the use of traditional FMEA techniques. The proposed model is applied to a Blowout Preventer (BOP) system operating under erratic and extreme conditions in a subsea oil and gas field. Though those failures caused by kill valves and hydraulic lines remain among the top risks in the BOP system, significant differences are revealed in risk rankings when the results from the hybrid approach are compared with those obtained from the classical risk analysis methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3