Coal Seam Thickness Prediction Based on Transition Probability of Structural Elements

Author:

Qi Ailing,Kang WenhuiORCID,Zhang Guangming,Lei Haijun

Abstract

Coal seam thickness prediction is crucial in coal mine design and coal mining. In order to improve the prediction accuracy, an improved Kriging interpolation method on the basis of efficient data and Radial Basis Function (RBF-Kriging) is firstly proposed to interpolate the cutting data that is obtained in pre-mining, especially at the edge of the geological surface of coal seam by taking into account the spatial structure and the efficient spatial range, ensuring the integrity of the edge data during the movement of structural elements. Subsequently, a structural element transition probability based Gaussian process progression (STTP-GPR) method is proposed to predict the coal seam thickness from the interpolated coal seam data. The experimental results demonstrated that the proposed STTP-GPR method has superior performance in coal seam thickness prediction. The average absolute error of thickness prediction for thin coal seams is 0.025 m, which significantly improves the prediction accuracy in comparison to the existing back propagation (BP) neural networks, support vector machine, and Gaussian process regression methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference22 articles.

1. The concept, model and reserve forecast of green coal resources in China;Yuan;J. China Univ. Min. Technol.,2018

2. Discussion on the technology and development direction of coal mine safety in China;Chen;Sci. Technol. Inf.,2013

3. Roof instability characteristics and pre-grouting of the roof caving zone in residual coal mining

4. Extended Co-Kriging interpolation method based on multi-fidelity data

5. Kriging Interpolation Method Optimized by LSSVM and Its Application in Predicting Coal Thickness;Wu;Coal Technol.,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3