The Energy Transition and Energy Equity: A Compatible Combination?

Author:

Henckens Matheus L. C. M.ORCID

Abstract

Much attention is being paid to the short-term supply security of raw materials for the energy transition. However, little attention is being paid to the impact of the energy transition on the long-term availability of a number of specific mineral resources that are needed for the realization of a fossil-free energy infrastructure. The aim of this paper is to examine whether the quantity of raw materials required for the energy transition could encounter limits of geological availability of mineral resources, especially in the case that energy supply and consumption are equitably distributed over all countries of the world in the long term. This study is an ex ante evaluation. The result of the evaluation is that four metals are relatively problematic: cobalt, copper, lithium, and nickel. The in-use stocks of these four metals in energy transition-related technologies may take up between 20% and 30% of the ultimately available resources of these metals in the continental Earth’s crust. Even with an 80% end-of-life recycling rate, the increase in the annual use of primary resources is estimated to be 9% for copper, 29% for nickel, 52% for cobalt, and 86% for lithium, compared to the estimated annual use of these metals without an energy transition. The conclusion of the study is that the question of whether energy equity and the energy transition are a compatible combination cannot be answered unambiguously. After all, it will depend on the extent and the speed with which cobalt, copper, lithium, and nickel can be substituted with other, geologically less scarce metals, and on the achieved end-of-life recycling rates of these metals, not only from energy transition-related products, but also from all other products in which these metals are applied. The novelty of the study is that the availability of raw materials for the energy transition is analyzed from a perspective of global equity at the expected level of the European Union in 2050.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3