Temperature Dependence of the Thermo-Optic Coefficient of SiO2 Glass

Author:

Rego Gaspar12ORCID

Affiliation:

1. ADiT-LAB, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial Nun’Álvares, 4900-347 Viana do Castelo, Portugal

2. Center for Applied Photonics, INESC TEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Abstract

This paper presents a thorough analysis on the temperature dependence of the thermo-optic coefficient, dn/dT, of four bulk annealed pure-silica glass samples (type I—natural quartz: Infrasil 301; type II—quartz crystal powder: Heraeus Homosil; type III—synthetic vitreous silica: Corning 7980 and Suprasil 3001) from room temperature down to 0 K. The three/four term temperature dependent Sellmeier equations and respective coefficients were considered, which results from fitting to the raw data obtained by Leviton et al. The thermo-optic coefficient was extrapolated down to zero Kelvin. We have obtained dn/dT values ranging from 8.16 × 10−6 up to 8.53 × 10−6 for the four samples at 293 K and for a wavelength of 1.55 μm. For the Corning 7980 SiO2 glass, the thermo-optic coefficient decreases monotonically, from 8.74 × 10−6 down to 8.16 × 10−6, from the visible range up to the third telecommunication window, being almost constant above 1.3 μm. The Ghosh’s model was revisited, and it was concluded that the thermal expansion coefficient only accounts for about 2% of the thermo-optic coefficient, and we have obtained an expression for the temperature behavior of the silica excitonic bandgap. Wemple’s model was also analyzed where we have also considered the material dispersion in order to determine the coefficients and respective temperature dependences. The limitations of this model were also discussed.

Funder

FCT-Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3