Principal Component Analysis Enhanced with Bootstrapped Confidence Interval for the Classification of Parkinsonian Patients Using Gaussian Mixture Model and Gait Initiation Parameters

Author:

Loete Florent1ORCID,Simonet Arnaud2,Fourcade Paul23,Yiou Eric23ORCID,Delafontaine Arnaud2345ORCID

Affiliation:

1. Laboratoire de Génie Électrique et Électronique de Paris, CNRS, Centrale Supélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France

2. CIAMS, Université Paris-Saclay, 91405 Orsay, France

3. CIAMS, Université d’Orléans, 45067 Orléans, France

4. Laboratoire D’Anatomie Fonctionnelle, Faculté des Sciences de la Motricité, Route de Lennik 808, Université Libre de Bruxelles, CP 619-1070 Bruxelles, Belgium

5. Laboratoire d’Anatomie, de Biomécanique et d’Organogenèse, Faculté de Médecine, Route de Lennik 808, Université Libre de Bruxelles, CP 619-1070 Bruxelles, Belgium

Abstract

Parkinson’s disease is one of the major neurodegenerative diseases that affects the postural stability of patients, especially during gait initiation. There is actually an increasing demand for the development of new non-pharmacological tools that can easily classify healthy/affected patients as well as the degree of evolution of the disease. The experimental characterization of gait initiation (GI) is usually done through the simultaneous acquisition of about 20 variables, resulting in very large datasets. Dimension reduction tools are therefore suitable, considering the complexity of the physiological processes involved. The principal Component Analysis (PCA) is very powerful at reducing the dimensionality of large datasets and emphasizing correlations between variables. In this paper, the Principal Component Analysis (PCA) was enhanced with bootstrapping and applied to the study of the GI to identify the 3 majors sets of variables influencing the postural control disability of Parkinsonian patients during GI. We show that the combination of these methods can lead to a significant improvement in the unsupervised classification of healthy/affected patients using a Gaussian mixture model, since it leads to a reduced confidence interval on the estimated parameters. The benefits of this method for the identification and study of the efficiency of potential treatments is not addressed in this paper but could be addressed in future works.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3