Characterization of Asphaltene Deposition Behavior in Diluted Heavy Oil under High-Pressure Conditions

Author:

Yang Zuguo12,Wu Xinpeng1,Guo Jixiang1,Zhang Jianjun2,Xiong Ruiying1,Liu Lei2,Kiyingi Wyclif1

Affiliation:

1. Unconventional Oil and Gas Research Institute, China University of Petroleum (Beijing), Beijing 102249, China

2. Key Laboratory of Enhanced Oil Recovery in Carbonate Fractured-Vuggy Reservoirs, SINOPEC Northwest Company of China Petroleum and Chemical Corporation, Urumqi 830011, China

Abstract

Some oil wells in the Tahe oilfield have been reported to produce extremely heavy oil due to asphaltene deposition. To enhance the flow of crude oil through the wellbore, engineers adopted the use of light oil from nearby wells to dissolve the heavy crude in the wells’ sections to maximize recovery from the Tahe oilfield. However, this mixing has led to the problem of accelerated asphaltene deposition, which often blocks the wellbore in the process. In this research, the factors that influence the stability of diluted heavy oil, temperature, and mixing ratio on asphaltene deposition characteristics under high pressure are studied using a high-temperature and high-pressure crude oil flow property experimental device based on the differential pressure method. The results under high pressure show that the initial deposition pressure of asphaltene decreases as the experimental temperature increases. With an increase in the mixing light oil ratio, the initial deposition pressure of diluted heavy oil increases, and the deposition trend of asphaltene strengthens. The asphaltene accumulation and deposition will be aggravated by filling quartz sand and pipe diameter changes. The research here is helpful to understand the deposition characteristics of asphaltene during the production of diluted heavy oil. It offers significant guidance in the prevention and control of asphaltene precipitation in heavy oil wells.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3