Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review

Author:

Maggiotto Giuseppe1,Colangelo Gianpiero1ORCID,Milanese Marco1ORCID,de Risi Arturo1ORCID

Affiliation:

1. Department of Engineering for Innovation, University of Salento, SP per Monteroni, 73100 Lecce, Italy

Abstract

The use of biomass can be a strategic way to realize a carbon-neutral energy plan, ensuring a fuel feedstock. Residual biomass arising from pruning is demonstrated to be an important energy resource in terms of quantity and quality. In the Salento peninsula, Apulia Region, in the south of Italy, a dramatic outbreak of Xylella fastidiosa has decimated olive trees since 2013, gaining a considerable amount of wood biomass. This paper, starting from the need to find a way to optimize the use of this available stock, reviews the main technologies on the utilization of olive wood for energy purposes. In particular, processes and products are here described, and an energy analysis compares lower heating value (LHV), higher heating value (HHV), mass yield, process operating conditions, and energy generated and spent by the process in order to find the most effective technology in order to optimize the energy use of olive biomass. The conclusions show the advantages and disadvantages of each technology. Pyrolysis performs well, showing the best results for both char HHV and syngas yield under different operating conditions. Gasification seems to be the most appropriate among conversion technologies to optimize olive tree pruning for energy purposes, as it can be used to produce both electrical and thermal energy. In terms of economic valorization, char is the most promising material representing a value-added product, the quality and versatility of which ranges from fuel to soil improvers and additives for the construction of supercapacitors. Conversely, its disadvantages are mainly represented by high ash content, which can slightly decrease the boiler efficiency. Finally, the amount of alkali metals can produce several problems, such as fouling, slagging, corrosion, etc., posing a challenge for combustion control and pollutant minimization.

Funder

Ministero dell’agricoltura, della sovranità alimentare e delle foreste

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3