Assessing the Environmental Sustainability of Deep Geothermal Heat Plants

Author:

Maar Lilli1,Seifermann Stefan2

Affiliation:

1. Department of Mechanical Engineering, University of Applied Sciences Mannheim, 68163 Mannheim, Germany

2. Department of Engineering and Management, University of Applied Sciences Mannheim, 68163 Mannheim, Germany

Abstract

The energy sector is responsible for a large share of climate-damaging emissions. Regarding the decarbonization of the energy sector, deep geothermal energy is considered to have high potential, particularly in the area of heat supply. In order to gauge the extent to which heat use from deep geothermal energy can make a positive contribution to climate protection, deep geothermal systems should be appraised using an environmental sustainability assessment. Although electricity generation from deep geothermal power plants has been evaluated in many ways in the literature with respect to its sustainability, no such sustainability evaluations of pure geothermal heat plants have been conducted so far. In order to close this research gap, this study presents a systematic approach that makes it possible to apply suitable sustainability criteria across the individual life stages of deep geothermal heat plants based on life-cycle assessment (LCA) guidelines. To demonstrate the effectiveness of the systematic approach presented here, a planned geothermal heat plant in the Upper Rhine Valley, Germany, serves as an example. Based on the estimated plant parameters and the predicted total heat yield, it was possible to determine, for example, the “energy returned on energy invested” (EROI) of the plant, which was approximately 34, and the specific CO2 emissions, which were approximately 5.6 g/kWhth.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference45 articles.

1. Risquez, M.A., Grassi, G., Solazzo, E., Jacome, F.O.D., Guizzardi, D., Rossi, S., San-Miguel-Ayanz, J., Pagani, F., Crippa, M., and Olivier, J. (2022). Emissions Database for Global Atmospheric Research, European Commission, Joint Research Centre (JRC). Available online: http://data.europa.eu/89h/e0344cc3-e553-4dd4-ac4c-f569c8859e19.

2. IRENA (2022). Renewable Capacity Statistics 2022, IRENA. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Apr/IRENA_RE_Capacity_Statistics_2022.pdf.

3. Lauf, T., Memmler, M., and Schneider, S. (2021). Emissionsbilanz Erneuerbarer Energieträger 2020—Bestimmung der Vermiedenen Emissionen Im Jahr 2020, Umweltbundesamt. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2021-12-13_climate-change_71-2021_emissionsbilanz_erneuerbarer_energien_2020_bf_korr-01-2022.pdf.

4. Agemar, T., Suchi, E., and Moeck, I. (2018). Die Rolle der Tiefen Geothermie Bei der Wärmewende—Wie Deutschland 60% Erneuerbare Wärme bis 2050 Schaffen Könnte, Leibniz-Institut für Angewandte Geophysik. Available online: https://www.leibniz-liag.de/fileadmin/user_upload/s4/downloads/positionspapier_waermewende.pdf.

5. Ortner, S., Mellwig, P., Blömer, S., Rettenmaier, N., Pehnt, M., Möhring, P., Sandrock, M., and Akram, P. (2020). Berichtspflicht Gemäß der Richtlinie

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3