Affiliation:
1. Huanan Pump Co., Ltd., Guangzhou 511400, China
2. Huanan Pump (Ganzhou) Co., Ltd., Ganzhou 342200, China
3. National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China
Abstract
A pump gate is a device that controls the flow of water. It can stop the flood when it comes, drain the ponding gathered in the city, and improve the water circulation of the city. Traditional pumping stations require a large land area, and their pump houses and gates need to be designed separately. Furthermore, the construction period of traditional pumping stations is lengthy, and the maintenance costs are high. It can no longer meet the needs of modern cities for water environment management. Therefore, it is imperative to design a new type of pump gate. The integrated pump gate introduced in this paper is an integrated construction of gates and pumps to achieve automatic control and bidirectional operation. The research mainly consists of three parts: design of pumping station, theoretical analysis, and numerical calculation. By studying the unstable flow inside the integrated pump, the characteristics and the degree of cavitation occurrence are predicted. This can provide a reference basis for the optimal design and stability operation of the integrated pump gate. To investigate cavitation in an integrated pump gate, numerical simulations were performed for multiple operating conditions using the SST turbulence model. Constant numerical simulations of cavitation through numerical calculation, the characteristic curves of the integrated pump gate under forward and reverse operation at different flow points were obtained, and flow field analysis was performed for the model pump at 1.0 Q. The location and degree of cavitation occurrence were predicted. In this study, a preliminary analysis was conducted to investigate the influence of cavitation on the internal flow characteristics of integrated gate pumps. The research collected data related to cavitation characteristics, streamline patterns, and blade pressures. Additionally, the study explored the characteristics of cavitation phenomena, laying the foundation for the optimization of the design of bidirectional operation in integrated sluice gate pumps for future practical engineering applications.
Funder
National Natural Science Foundation of China
The Chunhui Program Cooperative Scientific Research Project of the Ministry of Education
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference29 articles.
1. Zhao, Q. (2020). Analysis of the characteristics and application advantages of integrated pump gate. Mech. Electr. Inf., 52–53. (In Chinese).
2. Types and Comparative Analysis of Drainage Gate Stations;Tan;Shaanxi Water Conserv.,2021
3. Song, J. (2018). Application of integrated pump and gate in the management of Fuzhou inland water system. Fujian Constr., 140–142. (In Chinese).
4. Air Entrainment Flow Characteristics of Horizontal and Elbow Type Gate Pump-Sump Models;Guo;KSFM J. Fluid Mach.,2019
5. Li, H.L., and Fu, P. (2020). Study on issues related to pump selection and installation of Xinquansi pump station. Hunan Hydropower, 85–87. (In Chinese).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献