DGTTSSA: Data Gathering Technique Based on Trust and Sparrow Search Algorithm for WSNs

Author:

Osamy Walid12ORCID,Khedr Ahmed M.34ORCID,Alwasel Bader2ORCID,Salim Ahmed45ORCID

Affiliation:

1. Computer Science Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha 13513, Egypt

2. Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia

3. Computer Science Department, University of Sharjah, Sharjah 27272, United Arab Emirates

4. Mathematics Department, Zagazig University, Zagazig 44523, Egypt

5. Department of Computer Science, College of Science and Arts, Qassim University, P.O. Box 931, Buridah 51931, Saudi Arabia

Abstract

Wireless Sensor Networks (WSNs) have been successfully utilized for developing various collaborative and intelligent applications that can provide comfortable and smart-economic life. This is because the majority of applications that employ WSNs for data sensing and monitoring purposes are in open practical environments, where security is often the first priority. In particular, the security and efficacy of WSNs are universal and inevitable issues. One of the most effective methods for increasing the lifetime of WSNs is clustering. In cluster-based WSNs, Cluster Heads (CHs) play a critical role; however, if the CHs are compromised, the gathered data loses its trustworthiness. Hence, trust-aware clustering techniques are crucial in a WSN to improve node-to-node communication as well as to enhance network security. In this work, a trust-enabled data-gathering technique based on the Sparrow Search Algorithm (SSA) for WSN-based applications, called DGTTSSA, is introduced. In DGTTSSA, the swarm-based SSA optimization algorithm is modified and adapted to develop a trust-aware CH selection method. A fitness function is created based on the nodes’ remaining energy and trust values in order to choose more efficient and trustworthy CHs. Moreover, predefined energy and trust threshold values are taken into account and are dynamically adjusted to accommodate the changes in the network. The proposed DGTTSSA and the state-of-the-art algorithms are evaluated in terms of the Stability and Instability Period, Reliability, CHs Average Trust Value, Average Residual Energy, and Network Lifetime. The simulation results indicate that DGTTSSA selects the most trustworthy nodes as CHs and offers a significantly longer network lifetime than previous efforts in the literature. Moreover, DGTTSSA improves the instability period compared to LEACH-TM, ETCHS, eeTMFGA, and E-LEACH up to 90%, 80%, 79%, 92%, respectively, when BS is located at the center, up to 84%, 71%, 47%, 73%, respectively, when BS is located at the corner, and up to 81%, 58%, 39%, 25%, respectively, when BS is located outside the network.

Funder

Deanship of Scientific Research, Qassim University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3