Speciation of Main Nutrients (N/P/K) in Hydrochars Produced from the Hydrothermal Carbonization of Swine Manure under Different Reaction Temperatures

Author:

Xiong Jiangbo,Chen Shuaiwei,Wang Jiaxin,Wang Yujie,Fang Xiaolin,Huang HuajunORCID

Abstract

Hydrothermal carbonization (HTC) has been proved to be a promising technology for swine manure (SM) treatment. Currently, there is a lack of systematic understanding of the transformation characteristics of nutrient speciation in the HTC of SM. In this study, the speciation of the main nutrients (N/P/K) in SM-derived hydrochar produced at different reaction temperatures (200–280 °C) was investigated. The recovery of P (61.0–67.1%) in hydrochars was significantly higher than that of N (23.0–39.8%) and K (25.5–30.0%), and the increase in reaction temperature promoted the recovery of P and reduced the recovery of N. After the HTC treatment, the percentage of soluble/available P was reduced from 61.6% in raw SM to 4.0–23.9% in hydrochars, while that of moderately labile/slow-release P was improved from 29.2% in raw SM feedstock to 65.5–82.7%. An obvious reduction was also found in the amounts of available N (from 51.3% in raw SM feedstock to 33.0–40.5% in hydrochars). The percentages of slow-release N and residual N in hydrochars produced at 240 °C reached the maximum and minimum values (46.4% and 18.9%), respectively. A total of 49.5–58.3% of K retained in hydrochars was residual (invalid) potassium. From the perspective of the mobility and availability of N, P and K only, it was suggested that the HTC of SM should be carried out at 220–240 °C. Compared with the original SM, it is safer and more effective to use the SM-derived hydrochar as an organic fertilizer.

Funder

Natural Science Foundation of Jiangxi Province

Scientific Research Fund of Jiangxi Provincial Education Department

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3