Microstructural Study of Arc Beads in Aluminum Alloy Wires with an Overcurrent Fault

Author:

Xu Xueyan,Yu Zhijin,Li Yang,Wang Weifeng,Xu Lan

Abstract

To clarify the understanding and analysis of arc molten marks in electrical faults of aluminum alloy wires, this paper simulates overcurrent faults of aluminum alloy wires at currents of 128 A–224 A and uses thermogravimetry-differential scanning calorimetry (TG-DSC), optical microscope (OM), scanning electron microscope (SEM) and X-ray energy spectroscopy (EDS) to characterize the effects of current on the microstructure of arc beads. The results show that there are small and large amounts of Al-Si and Al-Fe binary phases in the metallographic structure of the aluminum alloy wires at the rated current, the grains are fine, and there are no significant grain boundaries. After an overcurrent fault occurs in the wires, a high-temperature arc causes the second phase in the aluminum alloy to disappear, a cellular dendritic metallographic structure appears, the grain boundaries become more well-defined, and composition segregation occurs at the grain boundaries. Using Image-Pro-Plus software to quantify the grain characteristics, the average grain size is found to gradually decrease as the current increases. In addition, by comparing and analyzing the characteristics of arc beads in aluminum wires and aluminum alloy wires under the same conditions, alloying elements are found to have a refining effect on the grain boundaries, and there are coarse precipitates at the grain boundaries in the aluminum wire arc beads.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference32 articles.

1. Alloying design of a thermal-resistant aluminum alloy conductor material with high conductivity;Liu;Trans. Mater. Heat Treat.,2014

2. Development of innovative aluminum alloys for production of overhead electrical conductors;Sambor;Light Met. Age,2015

3. Effect of isothermal annealing on microstructure and properties of 8030 aluminum alloy wire;Han;Heat Treat. Metals.,2020

4. Poor electrical connection ignites church fire;Tremblay;Epigenomics,2015

5. The Comparative research of melted trace due to fire-burning and short-circuit;Hong;J. Liaoning Univ.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3