Experimental Study of the Resistance to Influence of Aggressive Liquids on Lightweight Concrete

Author:

Kurpińska MarzenaORCID,Haustein ElżbietaORCID

Abstract

In light of the scientific research, the corrosion of concrete structures is one of the main problems that may reduce their durability due to the negative impact of the natural environment. The paper analyzes the influence of the type of component on the selected properties of lightweight concrete subjected to the influence of aggressive liquids. Four concrete mixes were prepared with a granular aggregate made of foamed glass (GEGA) and aggregate made of sintered fly ash (GAA) with the use of a mineral additive: silica fly ash. The prepared lightweight concrete after one year was exposed for 60 days to the following environments: strong acid—HCl, 1% and 2% concentration, weak acid—CH3COOH, 1% and 2% concentration, and an aqueous salt solution of Na2SO4, 1% and 2% concentration. Then, the compressive strength was tested, and the microstructure analysis of the ready-made lightweight concrete (LWC) was performed. The degree of penetration of aggressive solutions into the cracks of the samples was assessed by means of applying 1% phenolphthalein solution. Changes in the weight of lightweight concrete samples after the test period were estimated. The obtained test results indicate that the decrease in the durability of lightweight concrete can be classified as a long-term process. Concrete with GEGA and GAA showed high resistance to aggressive environments. Moreover, the environment containing chlorides turned out to be the most aggressive, while the environment containing sulfates proved to be the least aggressive. The higher the concentration of the destructive factor was, the faster the corrosion process went. This has been proven by measuring the pH using phenolphthalein and carrying out microscopic examination. Concretes containing aggregates made of foamed glass and sintered fly ash are suitable for use both in traditional construction and in facilities exposed to an aggressive environment (e.g., in the chemical industry and at gas stations).

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3