Evaluation of Two Amendments (Biochar and Acid Mine Drainage Sludge) on Arsenic Contaminated Soil Using Chemical, Biological, and Ecological Assessments

Author:

Kim Min-SukORCID,Lee Sang-Hwan,Park HyunORCID,Kim Jeong-GyuORCID

Abstract

Various types of organic and inorganic materials are widely examined and applied into the arsenic (As) contaminated soil to stabilize As bioavailability and to enhance soil quality as an amendment. This study deals with two types of amendments: biochar for organic amendment and acid mine drainage sludge (AMDS) for inorganic amendment. Each amendment was applied in two types of As contaminated soils: one showed low contaminated concentration and acid property and the other showed high contaminated concentration and alkali property. In order to comprehensively evaluate the effect of amendments on As contaminated soil, chemical (As bioavailability), biological phytotoxicity (Lactuca sativa), soil respiration activity, dehydrogenase activity, urease activity, ß-glucosidase activity, and acid/alkali phosphomonoesterase activity, an ecological (total bacterial cells and total metagenomics DNA at the phylum level) assessment was conducted. Both amendments increased soil pH and dissolved organic carbon (DOC), which changes the bioavailability of As. In reducing phytotoxicity to As, the AMDS was the most effective regardless of soil types. Although soil enzyme activity results were not consistent with amendments types and soil types, bacterial diversity was increased after amendment application in acid soil. In acid soil, the results of principal component analysis represented that AMDS contributes to improve soil quality through the reduction in As bioavailability and the correction of soil pH from acidic to neutral condition, despite the increases in DOC. However, soil DOC had a negative effect on As bioavailability, phytotoxicity and some enzyme activity in alkali soil. Taken together, it is necessary to comprehensively evaluate the interaction of chemical, biological, and ecological properties according to soil pH in the decision-making stages for the selection of appropriate soil restoration material.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3