A Hybrid Spatio-Temporal Prediction Model for Solar Photovoltaic Generation Using Numerical Weather Data and Satellite Images

Author:

Kim BowooORCID,Suh DongjunORCID

Abstract

Precise and accurate prediction of solar photovoltaic (PV) generation plays a major role in developing plans for the supply and demand of power grid systems. Most previous studies on the prediction of solar PV generation employed only weather data composed of numerical text data. The numerical text weather data can reflect temporal factors, however, they cannot consider the movement features related to the wind direction of the spatial characteristics, which include the amount of both clouds and particulate matter (PM) among other weather features. This study aims developing a hybrid spatio-temporal prediction model by combining general weather data and data extracted from satellite images having spatial characteristics. A model for hourly prediction of solar PV generation is proposed using data collected from a solar PV power plant in Incheon, South Korea. To evaluate the performance of the prediction model, we compared and performed ARIMAX analysis, which is a traditional statistical time-series analysis method, and SVR, ANN, and DNN, which are based on machine learning algorithms. The models that reflect the temporal and spatial characteristics exhibited better performance than those using only the general weather numerical data or the satellite image data.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing photovoltaic energy forecasting: a progressive approach using wavelet packet decomposition;Clean Energy;2024-04-24

2. Solar PV Generation Prediction Based on Multisource Data Using ROI and Surrounding Area;IEEE Transactions on Geoscience and Remote Sensing;2024

3. Local-global methods for generalised solar irradiance forecasting;Applied Intelligence;2024-01

4. Improving the Accuracy for Predicting Solar Power Using the Novel Gradient Boosting Regressor Algorithm in Comparison With the RANSAC Regressor Algorithm;2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS);2023-12-14

5. Ultra-short-term Photovoltaic Power Prediction Based on STCN Model;2023 3rd International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT);2023-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3