Classification of the Complex Agricultural Planting Structure with a Semi-Supervised Extreme Learning Machine Framework

Author:

Feng Ziyi,Huang Guanhua,Chi Daocai

Abstract

Many approaches have been developed to analyze remote sensing images. However, for the classification of large-scale problems, most algorithms showed low computational efficiency and low accuracy. In this paper, the newly developed semi-supervised extreme learning machine (SS-ELM) framework with k-means clustering algorithm for image segmentation and co-training algorithm to enlarge the sample sets was used to classify the agricultural planting structure at large-scale areas. Data sets collected from a small-scale area within the Hetao Irrigation District (HID) at the upper reaches of the Yellow River basin were used to evaluate the SS-ELM framework. The results of the SS-ELM algorithm were compared with those of the random forest (RF), ELM, support vector machine (SVM) and semi-supervised support vector machine (S-SVM) algorithms. Then the SS-ELM algorithm was applied to analyze the complex planting structure of HID in 1986–2010 by comparing the remote sensing estimated results with the statistical data. In the small-scale case, the SS-ELM algorithm performed better than the RF, ELM, SVM, and S-SVM algorithms. For the SS-ELM algorithm, the average overall accuracy (OA) was in a range of 83.00–92.17%. On the contrary, for the other four algorithms, their average OA values ranged from 56.97% to 92.84%. Whereas, in the classification of planting structure in HID, the SS-ELM algorithm had an excellent performance in classification accuracy and computational efficiency for three major planting crops including maize, wheat, and sunflowers. The estimated areas by using the SS-ELM algorithm based on the remote sensing images were consistent with the statistical data, and their difference was within a range of 3–25%. This implied that the SS-ELM framework could be served as an effective method for the classification of complex planting structures with relatively fast training, good generalization, universal approximation capability, and reasonable learning accuracy.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3