Partitioning Global Surface Energy and Their Controlling Factors Based on Machine Learning

Author:

Yuan XiuliangORCID,Uchenna Ochege FridayORCID,De Maeyer PhilippeORCID,Kurban AlishirORCID

Abstract

As two competitive pathways of surface energy partitioning, latent (LE) and sensible (H) heat fluxes are expected to be strongly influenced by climate change and wide spread of global greening in recent several decades. Quantifying the surface energy fluxes (i.e., LE and H) variations and controlling factors is still a challenge because of the discrepancy in existing models, parameterizations, as well as driven datasets. In this study, we assessed the ability of random forest (RF, a machine learning method) and further predicted the global surface energy fluxes (i.e., LE and H) by combining FLUXNET observations, climate reanalysis and satellite-based leaf area index (LAI). The results show that the surface energy fluxes variations can be highly explained by the established RF models. The coefficient of determination (R2) ranges from 0.66 to 0.89 for the LE, and from 0.53 to 0.90 for the H across 10 plant functional types (PFTs), respectively. Meanwhile, the root mean square error (RMSE) ranges from 12.20 W/m2 to 21.94 W/m2 for the LE and from 12.05 W/m2 to 22.34 W/m2 for the H at a monthly scale, respectively. The important influencing factors in building RF models are divergent with respect to LE and H, but the solar radiation is common to both LE and H and to all 10 PFTs in this study. We also found a contrasting trend of LE and H: a positive trend in LE and a negative trend in H during 1982–2016 and these contrasting trends are dominated by the elevated CO2 concentration level. Our study suggested an important role of the CO2 concentration in determining surface energy partitioning which is needed to be considered in future studies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3