Combining Phenological Camera Photos and MODIS Reflectance Data to Predict GPP Daily Dynamics for Alpine Meadows on the Tibetan Plateau

Author:

Zhou Xuqiang,Wang XufengORCID,Zhang Songlin,Zhang Yang,Bai Xuejie

Abstract

Gross primary production (GPP) is the overall photosynthetic fixation of carbon per unit space and time. Due to uncertainties resulting from clouds, snow, aerosol, and topography, it is a challenging task to accurately estimate daily GPP. Daily digital photos from a phenological camera record vegetation daily greenness dynamics with little cloud or aerosol disturbance. It can be fused with satellite remote sensing data to improve daily GPP prediction accuracy. In this study, we combine the two types of datasets to improve the estimation accuracy of GPP for alpine meadow on the Tibetan Plateau. To examine the performance of different methods and vegetation indices (VIs), three experiments were designed. First, GPP was estimated with the light use efficiency (LUE) model with the green chromatic coordinate (GCC) from the phenological camera and vegetation index from MODIS, respectively. Second, GPP was estimated with the Backpropagation neural network machine learning algorithm (BNNA) method with GCC from the phenological camera and vegetation index from MODIS, respectively. Finally, GPP was estimated with the BNNA method using GCC and vegetation index as inputs at the same time. Compared with eddy covariance GPP, GPP predicted by the BNNA method with GCC and vegetation indices as inputs at the same time showed the highest accuracy of all the experiments. The results indicated that GCC had a higher accuracy than NDVI and EVI when only one vegetation index data was used in the LUE model or the BNNA method. The R2 of GPP estimated by BNNA and GPP from eddy covariance increased by 0.12 on average, RMSE decreased by 1.13 g C·m−2·day−1 on average, and MAD decreased by 0.87 g C·m−2·day−1 on average compared with GPP estimated by the traditional LUE model and GPP from eddy covariance. This study puts forth a new way to improve the estimation accuracy of GPP on the Tibetan Plateau. With the emergence of a large number of phenological cameras, this method has great potential for use on the Tibetan Plateau, which is heavily affected by clouds and snow.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3