Abstract
This study calculated the augmentation of water resources that can be achieved through precipitation enhancement and the ensuing economic benefits by conducting precipitation enhancement experiments using atmospheric aircraft in the catchment areas of 21 multipurpose dams in Korea. The maximum number of precipitation enhancement experiments to be carried out was estimated based on the frequency of occurrence of seedable clouds near each dam, using geostationary satellite data. The maximum quantity of water that can be obtained was calculated considering the mean precipitation enhancement and probability of success, as determined from the results of experiments conducted in South Korea during 2018–2019. The effective area of seeding was assumed 300 km2. In addition, the amount of hydroelectric power generation possible was determined from the quantity of water thus calculated. In conclusion, it was established that an approximate increase of 12.89 million m3 (90% confidence interval: 7.83–17.95 million m3) of water, and 4.79 (2.91–6.68) million kWh of electric power generation will be possible through approximately 96 precipitation enhancement operations in a year at the catchment area of Seomjin River (SJ) dam which has a high frequency of occurrence of seedable clouds, a large drainage area, and a high net head. An economic benefit of approximately 1.01 (0.61–1.40) million USD can be anticipated, the benefit/cost ratio being 1.46 (0.89–2.04).
Subject
General Earth and Planetary Sciences
Reference104 articles.
1. Water-Resources Engineering;Chin,2000
2. The global water cycle;Oki;Geophys. Monogr. Ser.,2004
3. Ocean Salinity and the Global Water Cycle
4. World Water Resources at the Beginning of the Twenty-First Century;Shiklomanov,2003
5. World Water: Resources, Usage and the Role of Man-Made Reservoirs;White,2010
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献