Optimizing the Recognition and Feature Extraction of Wind Turbines through Hybrid Semantic Segmentation Architectures

Author:

Manso-Callejo Miguel-ÁngelORCID,Cira Calimanut-IonutORCID,Alcarria RamónORCID,Arranz-Justel José-JuanORCID

Abstract

Updating the mapping of wind turbines farms—found in constant expansion—is important to predict energy production or to minimize the risk of these infrastructures during storms. This geoinformation is not usually provided by public mapping agencies, and the alternative sources are usually consortiums or individuals interested in mapping and study. However, they do not offer metadata or genealogy, and their quality is unknown. This article presents a methodology oriented to optimize the recognition and extraction of features (wind turbines) using hybrid architectures of semantic segmentation. The aim is to characterize the quality of these datasets and help to improve and update them automatically at a large-scale. To this end, we intend to evaluate the capacity of hybrid semantic segmentation networks trained to extract features representing wind turbines from high-resolution images and to characterize the positional accuracy and completeness of a dataset whose genealogy and quality are unknown. We built a training dataset composed of 5140 tiles of aerial images and their cartography to train six different neural network architectures. The networks were evaluated on five test areas (covering 520 km2 of the Spanish territory) to identify the best segmentation architecture (in our case, LinkNet as base architecture and EfficientNet-b3 as the backbone). This hybrid segmentation model allowed us to characterize the completeness—both by commission and by omission—of the available georeferenced wind turbine dataset, as well as its geometric quality.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3