Improved Mapping of Potentially Toxic Elements in Soil via Integration of Multiple Data Sources and Various Geostatistical Methods

Author:

Xia Fang,Hu BifengORCID,Zhu Youwei,Ji Wenjun,Chen SongchaoORCID,Xu Dongyun,Shi Zhou

Abstract

Soil pollution by potentially toxic elements (PTEs) has become a core issue around the world. Knowledge of the spatial distribution of PTEs in soil is crucial for soil remediation. Portable X-ray fluorescence spectroscopy (p-XRF) provides a cost-saving alternative to the traditional laboratory analysis of soil PTEs. In this study, we collected 293 soil samples from Fuyang County in Southeast China. Subsequently, we used several geostatistical methods, such as inverse distance weighting (IDW), ordinary kriging (OK), and empirical Bayesian kriging (EBK), to estimate the spatial variability of soil PTEs measured by the laboratory and p-XRF methods. The final maps of soil PTEs were outputted by the model averaging method, which combines multiple maps previously created by IDW, OK, and EBK, using both lab and p-XRF data. The study results revealed that the mean PTE content measured by the laboratory methods was as follows: Zn (127.43 mg kg−1) > Cu (31.34 mg kg−1) > Ni (20.79 mg kg−1) > As (10.65 mg kg−1) > Cd (0.33 mg kg−1). p-XRF measurements showed a spatial prediction accuracy of soil PTEs similar to that of laboratory analysis measurements. The spatial prediction accuracy of different PTEs outputted by the model averaging method was as follows: Zn (R2 = 0.71) > Cd (R2 = 0.68) > Ni (R2 = 0.67) > Cu (R2 = 0.62) > As (R2 = 0.50). The prediction accuracy of the model averaging method for five PTEs studied herein was improved compared with that of the laboratory and p-XRF methods, which utilized individual geostatistical methods (e.g., IDW, OK, EBK). Our results proved that p-XRF was a reliable alternative to the traditional laboratory analysis methods for mapping soil PTEs. The model averaging approach improved the prediction accuracy of the soil PTE spatial distribution and reduced the time and cost of monitoring and mapping PTE soil contamination.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3