Exploring the Potential of Machine Learning for Modeling Growth Dynamics in an Uneven-Aged Forest at the Level of Diameter Classes: A Comparative Analysis of Two Modeling Approaches

Author:

Dumollard Gaspard

Abstract

Growth models of uneven-aged forests on the diameter class level can support silvicultural decision making. Machine learning brings added value to the modeling of dynamics at the stand or individual tree level based on data from permanent plots. The objective of this study is to explore the potential of machine learning for modeling growth dynamics in uneven-aged forests at the diameter class level based on inventory data from practice. Two main modeling approaches are conducted and compared: (i) fine-tuned linear models differentiated per diameter class, (ii) an artificial neural network (multilayer perceptron) trained on all diameter classes. The models are trained on the inventory data of the Canton of Neuchâtel (Switzerland), which are area-wide data without individual tree-level growth monitoring. Both approaches produce convincing results for predicting future diameter distributions. The linear models perform better at the individual diameter class level with test R2 typically between 50% and 70% for predicting increments in the numbers of stems at the diameter class level. From a methodological perspective, the multilayer perceptron implementation is much simpler than the fine-tuning of linear models. The linear models developed in this study achieve sufficient performance for practical decision support.

Funder

Federal Office for the Environment

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3