Identification of AP2/ERF Transcription Factor Family Genes and Expression Patterns in Response to Drought Stress in Pinusmassoniana

Author:

Sun Shuang,Liang Xingxing,Chen Hu,Hu La,Yang Zhangqi

Abstract

Pinus massoniana Lamb. is found in 17 Chinese provinces and is an important timber tree species in southern China. The current seasonal drought climate is becoming increasingly severe, threatening P. massoniana growth and limiting the development of the P. massoniana industry. Plant growth, development, and stress were all regulated by AP2/ERF. We identified 124 AP2/ERF transcription factor family members in this study and discovered that all the genes had their own conserved structural domains and that PmAP2/ERFs were divided into 12 subfamilies with high conservation and similarity in gene structure and evolutionary level. Nine PmAP2/ERF genes were constitutively expressed under drought treatment, and it was hypothesized that the PmAP2/ERF96 gene negatively regulated drought stress, PmAP2/ERF46 and PmAP2/ERF49 genes showed a positive or negative response to drought in different tissues, while the remaining six genes were positively regulated. The PmAP2/ERF genes responded to drought stress following treatment with the exogenous hormones SA, ABA, and MeJA, but the expression patterns differed, with each gene responding to at least one exogenous hormone to induce up-regulation of expression under drought stress, with PmAP2/ERF11, PmAP2/ERF44, PmAP2/ERF77, and PmAP2/ERF80 genes significantly induced by three hormones. The genes mentioned above may be involved in hormone signaling pathways in response to drought stress. The results indicate that the PmAP2/ERF genes may positively or negatively regulate the corresponding signaling pathways in P. massoniana to improve drought resistance.

Funder

The Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3