α-Viniferin-Induced Apoptosis through Downregulation of SIRT1 in Non-Small Cell Lung Cancer Cells

Author:

Huang Cheng1,Lin Zi-Jun23ORCID,Chen Jui-Chieh4,Zheng Hao-Jun23,Lai Yu-Heng5,Huang Hsiu-Chen23ORCID

Affiliation:

1. Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan

2. Center for Teacher Education, National Tsing Hua University, Hsinchu 30014, Taiwan

3. Department of Applied Science, Nanda Campus, National Tsing Hua University, Hsinchu 30014, Taiwan

4. Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 60004, Taiwan

5. Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan

Abstract

α-Viniferin, a natural stilbene compound found in plants and a polymer of resveratrol, had demonstrated potential anti-cancer and anti-inflammatory effects. However, the specific mechanisms underlying its anti-cancer activity were not yet fully understood and required further investigation. This study evaluated the effectiveness of α-viniferin and ε-viniferin using MTT assay. Results showed that α-viniferin was more effective than ε-viniferin in reducing the viability of NCI-H460 cells, a type of non-small cell lung cancer. Annexin V/7AAD assay results provided further evidence that the decrease in cell viability observed in response to α-viniferin treatment was due to the induction of apoptosis in NCI-H460 cells. The present findings indicated that treatment with α-viniferin could stimulate apoptosis in cells by cleaving caspase 3 and PARP. Moreover, the treatment reduced the expression of SIRT1, vimentin, and phosphorylated AKT, and also induced AIF nuclear translocation. Furthermore, this research provided additional evidence for the effectiveness of α-viniferin as an anti-tumor agent in nude mice with NCI-H460 cell xenografts. As demonstrated by the TUNEL assay results, α-viniferin promoted apoptosis in NCI-H460 cells in nude mice.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3