Tris(aminomethyl)phosphines and Their Copper(I) (Pseudo)halide Complexes with Aromatic Diimines—A Critical Retrospection

Author:

Starosta Radosław12ORCID

Affiliation:

1. Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland

2. Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

Abstract

Metal complexes feature a wide range of available geometries, diversified lability, controllable hydrolytic stability, and easily available rich redox activity. These characteristics, combined with the specific properties of coordinated organic molecules, result in many different mechanisms of biological action, making each of the myriads of the classes of metal coordination compounds unique. This focused review presents combined and systematized results of the studies of a group of copper(I) (pseudo)halide complexes with aromatic diimines and tris(aminomethyl)phosphines of a general formula [CuX(NN)PR3], where X = I− or NCS−, NN = 2,2′-bipyridyl, 1,10-phenanthroline, 2,9-dimethyl-1,10-phenanthroline or 2,2′-biquinoline, and PR3 = air-stable tris(aminomethyl)phosphines. The structural and electronic properties of the phosphine ligands and luminescent complexes are discussed. The complexes with 2,9-dimethyl-1,10-phenanthroline, apart from being air- and water-stable, exhibit a very high in vitro antimicrobial activity against the Staphylococcus aureus and Candida albicans. Moreover, some of these complexes also show a strong in vitro antitumor activity against human ovarian carcinoma cell lines: MDAH 2774 and SCOV 3, CT26 (mouse colon carcinoma), and A549 (human lung adenocarcinoma) cell lines. The tested complexes are moderately able to induce DNA lesions through free radical processes, however the trends do not reflect observed differences in biological activity.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3