Abstract
This study investigated the performance of a trading agent based on a convolutional neural network model in portfolio management. The results showed that with real-world data the agent could produce relevant trading results, while the agent’s behavior corresponded to that of a high-risk taker. The data used were wide in comparison with earlier reported research and was based on the full set of the S&P 500 stock data for twenty-one years supplemented with selected financial ratios. The results presented are new in terms of the size of the data set used and with regards to the model used. The results provide direction and offer insight into how deep learning methods may be used in constructing automatic trading systems.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献