Can the SOM Analysis Predict Business Failure Using Capital Structure Theory? Evidence from the Subprime Crisis in Spain

Author:

Lucanera Juan Pedro,Fabregat-Aibar LauraORCID,Scherger ValeriaORCID,Vigier Hernán

Abstract

The paper aims to identify which variables related to capital structure theory predict business failure in the Spanish construction sector during the subprime crisis. An artificial neural network (ANN) approach based on Self-Organizing Maps (SOM) is proposed, which allows one to cluster between default and active firms’ groups. The similarities and differences between the main features in each group determine the variables that explain the capacities of failure of the analyzed firms. The network tests whether the factors that explain leverage, such as profitability, growth opportunities, size of the company, risk, asset structure, and age of the firm, can be suitable to predict business failure. The sample is formed by 152 construction firms (76 default and 76 active) in the Spanish market. The results show that the SOM correctly predicts 97.4% of firms in the construction sector and classifies the firms in five groups with clear similarities inside the clusters. The study proves the suitability of the SOM for predicting business bankruptcy situations using variables related to capital structure theory and financial crises.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3