Stochastic Process Emerged from Lattice Fermion Systems by Repeated Measurements and Long-Time Limit

Author:

Yamaga KazukiORCID

Abstract

It is known that, in quantum theory, measurements may suppress Hamiltonian dynamics of a system. A famous example is the ‘Quantum Zeno Effect’. This is the phenomena that, if one performs the measurements M times asking whether the system is in the same state as the one at the initial time until the fixed measurement time t, then survival probability tends to 1 by taking the limit M→∞. This is the case for fixed measurement time t. It is known that, if one takes measurement time infinite at appropriate scaling, the ‘Quantum Zeno Effect’ does not occur and the effect of Hamiltonian dynamics emerges. In the present paper, we consider the long time repeated measurements and the dynamics of quantum many body systems in the scaling where the effect of measurements and dynamics are balanced. We show that the stochastic process, called the symmetric simple exclusion process (SSEP), is obtained from the repeated and long time measurements of configuration of particles in finite lattice fermion systems. The emerging stochastic process is independent of potential and interaction of the underlying Hamiltonian of the system.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3